Three-dimensional Korteweg-de Vries equation and traveling wave solutions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Stability of Periodic Traveling Wave Solutions of the Generalized Korteweg-de Vries Equation

In this paper, we study the orbital stability for a four-parameter family of periodic stationary traveling wave solutions to the generalized Korteweg-de Vries (gKdV) equation ut = uxxx + f(u)x. In particular, we derive sufficient conditions for such a solution to be orbitally stable in terms of the Hessian of the classical action of the corresponding traveling wave ordinary differential equatio...

متن کامل

Symbolic Computation and Non-travelling Wave Solutions of the (2+1)-Dimensional Korteweg de Vries Equation

In this paper, with the aid of symbolic computation we improve the extended F-expansion method described in Chaos, Solitons and Fractals 22, 111 (2004) to solve the (2 +1)-dimensional Korteweg de Vries equation. Using this method, we derive many exact non-travelling wave solutions. These are more general than the previous solutions derived with the extended F-expansion method. They include the ...

متن کامل

Traveling Wave Solutions of the Camassa-Holm and Korteweg-de Vries Equations

We show that the smooth traveling waves of the Camassa-Holm equation naturally correspond to traveling waves of the Korteweg-de Vries equation.

متن کامل

Nonlinear Instability of a Critical Traveling Wave in the Generalized Korteweg-de Vries Equation

We prove the instability of a “critical” solitary wave of the generalized Korteweg – de Vries equation, the one with the speed at the border between the stability and instability regions. The instability mechanism involved is “purely nonlinear”, in the sense that the linearization at a critical soliton does not have eigenvalues with positive real part. We prove that critical solitons correspond...

متن کامل

Korteweg - de Vries Equation ; Asymptotic Behavior of Solutions

In [9] and [10], we have studied the initial value problem for the Korteweg-de Vries (KdV) equation (1.1) ut—6uu x +u xxx =0 by the inverse scattering method. In this paper we study the asymptotic behavior of the solutions as t— >zh°°-Consider the Schrodinger equation (1.2) over (— oo } oo) with the potential u(x) satisfying (1.3) (throughout the paper integration is taken over (— oo, oo) unles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2000

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171200004440